Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 19558, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31862951

RESUMEN

The treatment of hospital- and community-associated infections by methicillin-resistant Staphylococcus aureus (MRSA) is a perpetual challenge. This Gram-positive bacterium is resistant specifically to ß-lactam antibiotics, and generally to many other antibacterial agents. Its resistance mechanisms to ß-lactam antibiotics are activated only when the bacterium encounters a ß-lactam. This activation is regulated by the transmembrane sensor/signal transducer proteins BlaR1 and MecR1. Neither the transmembrane/metalloprotease domain, nor the complete MecR1 and BlaR1 proteins, are isolatable for mechanistic study. Here we propose a model for full-length MecR1 based on homology modeling, residue coevolution data, a new extensive experimental mapping of transmembrane topology, partial structures, molecular simulations, and available NMR data. Our model defines the metalloprotease domain as a hydrophilic transmembrane chamber effectively sealed by the apo-sensor domain. It proposes that the amphipathic helices inserted into the gluzincin domain constitute the route for transmission of the ß-lactam-binding event in the extracellular sensor domain, to the intracellular and membrane-embedded zinc-containing active site. From here, we discuss possible routes for subsequent activation of proteolytic action. This study provides the first coherent model of the structure of MecR1, opening routes for future functional investigations on how ß-lactam binding culminates in the proteolytic degradation of MecI.


Asunto(s)
Proteínas Bacterianas/metabolismo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo , beta-Lactamas/farmacología , Proteínas Bacterianas/genética , Western Blotting , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Simulación del Acoplamiento Molecular , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Espectrometría de Fluorescencia , Esferoplastos/efectos de los fármacos , Esferoplastos/genética , Resistencia betalactámica/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-30348667

RESUMEN

Carbapenems are "last resort" ß-lactam antibiotics used to treat serious and life-threatening health care-associated infections caused by multidrug-resistant Gram-negative bacteria. Unfortunately, the worldwide spread of genes coding for carbapenemases among these bacteria is threatening these life-saving drugs. Metallo-ß-lactamases (MßLs) are the largest family of carbapenemases. These are Zn(II)-dependent hydrolases that are active against almost all ß-lactam antibiotics. Their catalytic mechanism and the features driving substrate specificity have been matter of intense debate. The active sites of MßLs are flanked by two loops, one of which, loop L3, was shown to adopt different conformations upon substrate or inhibitor binding, and thus are expected to play a role in substrate recognition. However, the sequence heterogeneity observed in this loop in different MßLs has limited the generalizations about its role. Here, we report the engineering of different loops within the scaffold of the clinically relevant carbapenemase NDM-1. We found that the loop sequence dictates its conformation in the unbound form of the enzyme, eliciting different degrees of active-site exposure. However, these structural changes have a minor impact on the substrate profile. Instead, we report that the loop conformation determines the protonation rate of key reaction intermediates accumulated during the hydrolysis of different ß-lactams in all MßLs. This study demonstrates the existence of a direct link between the conformation of this loop and the mechanistic features of the enzyme, bringing to light an unexplored function of active-site loops on MßLs.


Asunto(s)
Antibacterianos/química , Ceftazidima/química , Imipenem/química , Meropenem/química , Zinc/química , beta-Lactamasas/química , Secuencia de Aminoácidos , Antibacterianos/metabolismo , Dominio Catalítico , Cefepima/química , Cefepima/metabolismo , Cefotaxima/química , Cefotaxima/metabolismo , Ceftazidima/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Imipenem/metabolismo , Cinética , Meropenem/metabolismo , Modelos Moleculares , Piperacilina/química , Piperacilina/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Ingeniería de Proteínas , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Zinc/metabolismo , Resistencia betalactámica , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
3.
Nat Commun ; 8(1): 538, 2017 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-28912448

RESUMEN

Carbapenem-resistant Enterobacteriaceae threaten human health, since carbapenems are last resort drugs for infections by such organisms. Metallo-ß-lactamases (MßLs) are the main mechanism of resistance against carbapenems. Clinically approved inhibitors of MBLs are currently unavailable as design has been limited by the incomplete knowledge of their mechanism. Here, we report a biochemical and biophysical study of carbapenem hydrolysis by the B1 enzymes NDM-1 and BcII in the bi-Zn(II) form, the mono-Zn(II) B2 Sfh-I and the mono-Zn(II) B3 GOB-18. These MßLs hydrolyse carbapenems via a similar mechanism, with accumulation of the same anionic intermediates. We characterize the Michaelis complex formed by mono-Zn(II) enzymes, and we identify all intermediate species, enabling us to propose a chemical mechanism for mono and binuclear MßLs. This common mechanism open avenues for rationally designed inhibitors of all MßLs, notwithstanding the profound differences between these enzymes' active site structure, ß-lactam specificity and metal content.Carbapenem-resistant bacteria pose a major health threat by expressing metallo-ß-lactamases (MßLs), enzymes able to hydrolyse these life-saving drugs. Here the authors use biophysical and computational methods and show that different MßLs share the same reaction mechanism, suggesting new strategies for drug design.


Asunto(s)
Carbapenémicos/metabolismo , Zinc/metabolismo , beta-Lactamasas/química , beta-Lactamasas/metabolismo , Carbapenémicos/química , Hidrólisis , Imipenem/química , Imipenem/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Simulación de Dinámica Molecular , Espectroscopía de Absorción de Rayos X
4.
Proc Natl Acad Sci U S A ; 113(26): E3745-54, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27303030

RESUMEN

Metallo-ß-lactamases (MBLs) hydrolyze almost all ß-lactam antibiotics and are unaffected by clinically available ß-lactamase inhibitors (ßLIs). Active-site architecture divides MBLs into three classes (B1, B2, and B3), complicating development of ßLIs effective against all enzymes. Bisthiazolidines (BTZs) are carboxylate-containing, bicyclic compounds, considered as penicillin analogs with an additional free thiol. Here, we show both l- and d-BTZ enantiomers are micromolar competitive ßLIs of all MBL classes in vitro, with Kis of 6-15 µM or 36-84 µM for subclass B1 MBLs (IMP-1 and BcII, respectively), and 10-12 µM for the B3 enzyme L1. Against the B2 MBL Sfh-I, the l-BTZ enantiomers exhibit 100-fold lower Kis (0.26-0.36 µM) than d-BTZs (26-29 µM). Importantly, cell-based time-kill assays show BTZs restore ß-lactam susceptibility of Escherichia coli-producing MBLs (IMP-1, Sfh-1, BcII, and GOB-18) and, significantly, an extensively drug-resistant Stenotrophomonas maltophilia clinical isolate expressing L1. BTZs therefore inhibit the full range of MBLs and potentiate ß-lactam activity against producer pathogens. X-ray crystal structures reveal insights into diverse BTZ binding modes, varying with orientation of the carboxylate and thiol moieties. BTZs bind the di-zinc centers of B1 (IMP-1; BcII) and B3 (L1) MBLs via the free thiol, but orient differently depending upon stereochemistry. In contrast, the l-BTZ carboxylate dominates interactions with the monozinc B2 MBL Sfh-I, with the thiol uninvolved. d-BTZ complexes most closely resemble ß-lactam binding to B1 MBLs, but feature an unprecedented disruption of the D120-zinc interaction. Cross-class MBL inhibition therefore arises from the unexpected versatility of BTZ binding.


Asunto(s)
Antibacterianos/química , Proteínas Bacterianas/química , Tiazolidinas/química , Inhibidores de beta-Lactamasas/química , beta-Lactamasas/química , Dominio Catalítico , Diseño de Fármacos , Hidrólisis , Cinética , Modelos Moleculares
5.
FEBS Lett ; 589(22): 3419-32, 2015 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-26297824

RESUMEN

Metallo-ß-lactamases are the latest resistance mechanism of pathogenic and opportunistic bacteria against carbapenems, considered as last resort drugs. The worldwide spread of genes coding for these enzymes, together with the lack of a clinically useful inhibitor, have raised a sign of alarm. Inhibitor design has been mostly impeded by the structural diversity of these enzymes. Here we provide a critical review of mechanistic studies of the three known subclasses of metallo-ß-lactamases, analyzed at the light of structural and mutagenesis investigations. We propose that these enzymes present a modular structure in their active sites that can be dissected into two halves: one providing the attacking nucleophile, and the second one stabilizing a negatively charged reaction intermediate. These are common mechanistic elements in all metallo-ß-lactamases. Nucleophile activation does not necessarily requires a Zn(II) ion, but a Zn(II) center is essential for stabilization of the anionic intermediate. Design of a common inhibitor could be therefore approached based in these convergent mechanistic features despite the structural differences.


Asunto(s)
Biocatálisis , beta-Lactamasas/metabolismo , Bacterias/efectos de los fármacos , Bacterias/enzimología , Cristalografía por Rayos X , Farmacorresistencia Microbiana , Humanos , Hidrólisis , beta-Lactamasas/química
6.
Biochemistry ; 54(20): 3183-96, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25915520

RESUMEN

ß-Lactamase inhibitors (BLIs) restore the efficacy of otherwise obsolete ß-lactams. However, commercially available BLIs are not effective against metallo-ß-lactamases (MBLs), which continue to be disseminated globally. One group of the most clinically important MBLs is the VIM family. The discovery of VIM-24, a natural variant of VIM-2, possessing an R228L substitution and a novel phenotype, compelled us to explore the role of this position and its effects on substrate specificity. We employed mutagenesis, biochemical and biophysical assays, and crystallography. VIM-24 (R228L) confers enhanced resistance to cephems and increases the rate of turnover compared to that of VIM-2 (kcat/KM increased by 6- and 10-fold for ceftazidime and cefepime, respectively). Likely the R → L substitution relieves steric clashes and accommodates the C3N-methyl pyrrolidine group of cephems. Four novel bisthiazolidine (BTZ) inhibitors were next synthesized and tested against these MBLs. These inhibitors inactivated VIM-2 and VIM-24 equally well (Ki* values of 40-640 nM) through a two-step process in which an initial enzyme (E)-inhibitor (I) complex (EI) undergoes a conformational transition to a more stable species, E*I. As both VIM-2 and VIM-24 were inhibited in a similar manner, the crystal structure of a VIM-2-BTZ complex was determined at 1.25 Å and revealed interactions of the inhibitor thiol with the VIM Zn center. Most importantly, BTZs also restored the activity of imipenem against Klebsiella pneumoniae and Pseudomonas aeruginosa in whole cell assays producing VIM-24 and VIM-2, respectively. Our results suggest a role for position 228 in defining the substrate specificity of VIM MBLs and show that BTZ inhibitors are not affected by the R228L substitution.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/química , Tiazolidinas/farmacología , beta-Lactamasas/química , Sustitución de Aminoácidos , Antibacterianos/química , Proteínas Bacterianas/genética , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/efectos de los fármacos , Imipenem/química , Imipenem/farmacología , Cinética , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Unión Proteica , Pseudomonas aeruginosa/enzimología , Tiazolidinas/química , Resistencia betalactámica , beta-Lactamasas/genética
7.
ACS Infect Dis ; 1(10): 454-9, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-27623311

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA), an important human pathogen, has evolved an inducible mechanism for resistance to ß-lactam antibiotics. We report herein that the integral membrane protein BlaR1, the ß-lactam sensor/signal transducer protein, is phosphorylated on exposure to ß-lactam antibiotics. This event is critical to the onset of the induction of antibiotic resistance. Furthermore, we document that BlaR1 phosphorylation and the antibiotic-resistance phenotype are both reversed in the presence of synthetic protein kinase inhibitors of our design, restoring susceptibility of the organism to a penicillin, resurrecting it from obsolescence in treatment of these intransigent bacteria.

8.
ACS Infect Dis ; 1(11): 544-54, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-27623409

RESUMEN

Pathogenic Gram-negative bacteria resistant to almost all ß-lactam antibiotics are a major public health threat. Zn(II)-dependent or metallo-ß-lactamases (MBLs) produced by these bacteria inactivate most ß-lactam antibiotics, including the carbapenems, which are "last line therapies" for life-threatening Gram-negative infections. NDM-1 is a carbapenemase belonging to the MBL family that is rapidly spreading worldwide. Regrettably, inhibitors of MBLs are not yet developed. Here we present the bisthiazolidine (BTZ) scaffold as a structure with some features of ß-lactam substrates, which can be modified with metal-binding groups to target the MBL active site. Inspired by known interactions of MBLs with ß-lactams, we designed four BTZs that behave as in vitro NDM-1 inhibitors with Ki values in the low micromolar range (from 7 ± 1 to 19 ± 3 µM). NMR spectroscopy demonstrated that they inhibit hydrolysis of imipenem in NDM-1-producing Escherichia coli. In vitro time kill cell-based assays against a variety of bacterial strains harboring blaNDM-1 including Acinetobacter baumannii show that the compounds restore the antibacterial activity of imipenem. A crystal structure of the most potent heterocycle (L-CS319) in complex with NDM-1 at 1.9 Å resolution identified both structural determinants for inhibitor binding and opportunities for further improvements in potency.

9.
Antibiotics (Basel) ; 3(3): 285-316, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25364574

RESUMEN

The production of ß-lactamase enzymes is one of the most distributed resistance mechanisms towards ß-lactam antibiotics. Metallo-ß-lactamases constitute a worrisome group of these kinds of enzymes, since they present a broad spectrum profile, being able to hydrolyze not only penicillins, but also the latest generation of cephalosporins and carbapenems, which constitute at present the last resource antibiotics. The VIM, IMP, and NDM enzymes comprise the main groups of clinically relevant metallo-ß-lactamases. Here we present an update of the features of the natural variants that have emerged and of the ones that have been engineered in the laboratory, in an effort to find sequence and structural determinants of substrate preferences. This knowledge is of upmost importance in novel drug design efforts. We also discuss the advances in knowledge achieved by means of in vitro directed evolution experiments, and the potential of this approach to predict natural evolution of metallo-ß-lactamases.

10.
Biochemistry ; 53(10): 1548-50, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24564530

RESUMEN

ß-Lactam antibiotics have faced obsolescence with the emergence of methicillin-resistant Staphylococcus aureus (MRSA). A complex set of events ensues upon exposure of MRSA to these antibiotics, which culminates in proteolysis of BlaI or MecI, two gene repressors, and results in the induction of resistance. We report studies on the mechanism of binding of these gene repressors to the operator regions by fluorescence anisotropy. Within the range of in vivo concentrations for BlaI and MecI, these proteins interact with their regulatory elements in a reversible manner, as both a monomer and a dimer.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Staphylococcus aureus Resistente a Meticilina/metabolismo , Proteínas Represoras/metabolismo , beta-Lactamas/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Regiones Operadoras Genéticas , Operón , Regiones Promotoras Genéticas , Proteínas Represoras/química , Proteínas Represoras/genética
11.
J Am Chem Soc ; 136(9): 3664-72, 2014 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-24517363

RESUMEN

Infections caused by hard-to-treat methicillin-resistant Staphylococcus aureus (MRSA) are a serious global public-health concern, as MRSA has become broadly resistant to many classes of antibiotics. We disclose herein the discovery of a new class of non-ß-lactam antibiotics, the oxadiazoles, which inhibit penicillin-binding protein 2a (PBP2a) of MRSA. The oxadiazoles show bactericidal activity against vancomycin- and linezolid-resistant MRSA and other Gram-positive bacterial strains, in vivo efficacy in a mouse model of infection, and have 100% oral bioavailability.


Asunto(s)
Antibacterianos/farmacología , Descubrimiento de Drogas , Bacterias Grampositivas/efectos de los fármacos , Oxadiazoles/farmacología , Proteínas de Unión a las Penicilinas/antagonistas & inhibidores , beta-Lactamas/farmacología , Animales , Antibacterianos/química , Antibacterianos/farmacocinética , Disponibilidad Biológica , Pared Celular/efectos de los fármacos , Simulación por Computador , Bacterias Grampositivas/citología , Bacterias Grampositivas/metabolismo , Staphylococcus aureus Resistente a Meticilina/citología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/metabolismo , Ratones , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Oxadiazoles/química , Oxadiazoles/farmacocinética , Proteínas de Unión a las Penicilinas/química , Conformación Proteica , beta-Lactamas/química , beta-Lactamas/farmacocinética
12.
Proc Natl Acad Sci U S A ; 110(42): 16808-13, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24085846

RESUMEN

The expression of penicillin binding protein 2a (PBP2a) is the basis for the broad clinical resistance to the ß-lactam antibiotics by methicillin-resistant Staphylococcus aureus (MRSA). The high-molecular mass penicillin binding proteins of bacteria catalyze in separate domains the transglycosylase and transpeptidase activities required for the biosynthesis of the peptidoglycan polymer that comprises the bacterial cell wall. In bacteria susceptible to ß-lactam antibiotics, the transpeptidase activity of their penicillin binding proteins (PBPs) is lost as a result of irreversible acylation of an active site serine by the ß-lactam antibiotics. In contrast, the PBP2a of MRSA is resistant to ß-lactam acylation and successfully catalyzes the DD-transpeptidation reaction necessary to complete the cell wall. The inability to contain MRSA infection with ß-lactam antibiotics is a continuing public health concern. We report herein the identification of an allosteric binding domain--a remarkable 60 Å distant from the DD-transpeptidase active site--discovered by crystallographic analysis of a soluble construct of PBP2a. When this allosteric site is occupied, a multiresidue conformational change culminates in the opening of the active site to permit substrate entry. This same crystallographic analysis also reveals the identity of three allosteric ligands: muramic acid (a saccharide component of the peptidoglycan), the cell wall peptidoglycan, and ceftaroline, a recently approved anti-MRSA ß-lactam antibiotic. The ability of an anti-MRSA ß-lactam antibiotic to stimulate allosteric opening of the active site, thus predisposing PBP2a to inactivation by a second ß-lactam molecule, opens an unprecedented realm for ß-lactam antibiotic structure-based design.


Asunto(s)
Resistencia a la Meticilina/fisiología , Staphylococcus aureus Resistente a Meticilina/enzimología , Proteínas de Unión a las Penicilinas/química , Acilación/fisiología , Regulación Alostérica/fisiología , Dominio Catalítico , Cefalosporinas/química , Cefalosporinas/metabolismo , Cristalografía por Rayos X , Staphylococcus aureus Resistente a Meticilina/genética , Ácidos Murámicos/química , Ácidos Murámicos/metabolismo , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/química , Peptidoglicano/metabolismo , Especificidad por Sustrato/fisiología , Ceftarolina
13.
J Am Chem Soc ; 135(9): 3311-4, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23421439

RESUMEN

The reactions of all seven Escherichia coli lytic transglycosylases with purified bacterial sacculus are characterized in a quantitative manner. These reactions, which initiate recycling of the bacterial cell wall, exhibit significant redundancy in the activities of these enzymes along with some complementarity. These discoveries underscore the importance of the functions of these enzymes for recycling of the cell wall.


Asunto(s)
Pared Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Glicósido Hidrolasas/metabolismo , Pared Celular/química , Pared Celular/enzimología , Escherichia coli/citología , Conformación Molecular , Sáculo y Utrículo/química , Sáculo y Utrículo/metabolismo
14.
ACS Med Chem Lett ; 3(3): 238-242, 2012 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-22844551

RESUMEN

Gram-negative bacteria have evolved an elaborate process for the recycling of their cell wall, which is initiated in the periplasmic space by the action of lytic transglycosylases. The product of this reaction, ß-D-N-acetylglucosamine-(1→4)-1,6-anhydro-ß-D-N-acetylmuramyl-L-Ala-γ-D-Glu-meso-DAP-D-Ala-D-Ala (compound 1), is internalized to begin the recycling events within the cytoplasm. The first step in the cytoplasmic recycling is catalyzed by the NagZ glycosylase, which cleaves in a hydrolytic reaction the N-acetylglucosamine glycosidic bond of metabolite 1. The reactions catalyzed by both the lytic glycosylases and NagZ are believed to involve oxocarbenium transition species. We describe herein the synthesis and evaluation of four iminosaccharides as possible mimetics of the oxocarbenium species, and disclose one as a potent (compound 3, K(i) = 300 ± 15 nM) competitive inhibitor of NagZ.

15.
Biochemistry ; 51(23): 4642-9, 2012 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-22616850

RESUMEN

A heterologous expression system was used to evaluate activation of BlaR1, a sensor/signal transducer protein of Staphylococcus aureus with a central role in resistance to ß-lactam antibiotics. In the absence of other S. aureus proteins that might respond to antibiotics and participate in signal transduction events, we documented that BlaR1 fragmentation is autolytic, that it occurs in the absence of antibiotics, and that BlaR1 directly degrades BlaI, the gene repressor of the system. Furthermore, we disclosed that this proteolytic activity is metal ion-dependent and that it is not modulated directly by acylation of the sensor domain by ß-lactam antibiotics.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Metaloendopeptidasas/metabolismo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo , Resistencia betalactámica , Proteínas Bacterianas/genética , Clonación Molecular , Escherichia coli , Metaloendopeptidasas/genética , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Proteolisis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Staphylococcus aureus/genética
16.
J Inorg Biochem ; 111: 182-6, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22381913

RESUMEN

Cobalt and zinc binding by the subclass B1 metallo-ß-lactamase BcII from Bacillus cereus is examined by X-ray absorption spectroscopy, at various levels of metal loading. The data show that a significant amount of the dinuclear enzyme is formed, even at substoichiometric levels of metal loading, whether the added metal is Zn(II) or Co(II). Increasing metal addition, from 0.5 to 1.0 to 2.0eq/mol of enzyme, are shown to result in a more ordered active site. While Zn(II) appears to show no preference for the Zn(1) (3H) or Zn(2) (DCH) sites, the extended X-ray absorption fine structure (EXAFS) suggests that Co(II) shows a slight preference for the DCH site at low levels of added Co(II). The results are discussed in the context of similar metal-binding studies of other B1 metallo-ß-lactamases.


Asunto(s)
Bacillus cereus/enzimología , Proteínas Bacterianas/metabolismo , Metaloproteínas/metabolismo , Metales/metabolismo , Espectroscopía de Absorción de Rayos X/métodos , beta-Lactamasas/metabolismo , Algoritmos , Proteínas Bacterianas/química , Sitios de Unión , Dominio Catalítico , Cobalto/química , Cobalto/metabolismo , Cobalto/farmacología , Relación Dosis-Respuesta a Droga , Cinética , Metaloproteínas/química , Metales/química , Metales/farmacología , Modelos Moleculares , Estructura Terciaria de Proteína/efectos de los fármacos , Zinc/química , Zinc/metabolismo , Zinc/farmacología , beta-Lactamasas/química
17.
J Biol Chem ; 287(11): 8232-41, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22262858

RESUMEN

The integral membrane protein BlaR1 of Staphylococcus aureus senses the presence of ß-lactam antibiotics in the milieu and transduces the information to its cytoplasmic side, where its activity unleashes the expression of a set of genes, including that for BlaR1 itself, which manifest the antibiotic-resistant phenotype. The x-ray structure of the sensor domain of this protein exhibits an uncanny similarity to those of the class D ß-lactamases. The former is a membrane-bound receptor/sensor for the ß-lactam antibiotics, devoid of catalytic competence for substrate turnover, whereas the latter are soluble periplasmic enzymes in gram-negative bacteria with avid ability for ß-lactam turnover. The two are clearly related to each other from an evolutionary point of view. However, the high resolution x-ray structures for both by themselves do not reveal why one is a receptor and the other an enzyme. It is documented herein that a single amino acid change at position 439 of the BlaR1 protein is sufficient to endow the receptor/sensor protein with modest turnover ability for cephalosporins as substrates. The x-ray structure for this mutant protein and the dynamics simulations revealed how a hydrolytic water molecule may sequester itself in the antibiotic-binding site to enable hydrolysis of the acylated species. These studies document how the nature of the residue at position 439 is critical for the fate of the protein in imparting unique functions on the same molecular template, to result in one as a receptor and in another as a catalyst.


Asunto(s)
Proteínas Bacterianas/química , Metaloendopeptidasas/química , Staphylococcus aureus/enzimología , beta-Lactamasas/química , Sustitución de Aminoácidos , Antibacterianos/química , Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , Catálisis , Cefalosporinas/química , Cefalosporinas/metabolismo , Cristalografía por Rayos X , Evolución Molecular , Metaloendopeptidasas/genética , Mutación Missense , Staphylococcus aureus/genética , beta-Lactamasas/genética , beta-Lactamas/química , beta-Lactamas/metabolismo
18.
J Biol Chem ; 286(44): 38148-38158, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21896485

RESUMEN

The fates of BlaI, the gene repressor protein for the bla operon, BlaR1, the ß-lactam sensor/signal transducer, and PC1 ß-lactamase in four strains of Staphylococcus aureus upon exposure to four different ß-lactam antibiotics were investigated as a function of time. The genes for the three proteins are encoded by the bla operon, the functions of which afford inducible resistance to ß-lactam antibiotics in S. aureus. BlaR1 protein is expressed at low copy number. Acylation of the sensor domain of BlaR1 by ß-lactam antibiotics initiates signal transduction to the cytoplasmic domain, a zinc protease, which is activated and degrades BlaI. This proteolytic degradation derepresses transcription of all three genes, resulting in inducible resistance. These processes take place within minutes of exposure to the antibiotics. The BlaR1 protein was shown to undergo fragmentation in three S. aureus strains within the time frame relevant for manifestation of resistance and was below the detection threshold in the fourth. Two specific sites of fragmentation were identified, one cytoplasmic and the other in the sensor domain. This is proposed as a means for turnover, a process required for recovery from induction of resistance in S. aureus in the absence of the antibiotic challenge. In S. aureus not exposed to ß-lactam antibiotics (i.e. not acylated by antibiotic) the same fragmentation of BlaR1 is still observed, including the shedding of the sensor domain, an observation that leads to the conclusion that the sites of proteolysis might have evolved to predispose the protein to degradation within a set period of time.


Asunto(s)
Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana , Metaloendopeptidasas/metabolismo , Staphylococcus aureus Resistente a Meticilina/metabolismo , Staphylococcus aureus/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Membrana Celular/enzimología , Citoplasma/metabolismo , Activación Enzimática , Metaloendopeptidasas/genética , Pruebas de Sensibilidad Microbiana , Modelos Biológicos , Estructura Terciaria de Proteína , Transducción de Señal , Staphylococcus aureus/metabolismo , beta-Lactamasas/metabolismo , beta-Lactamas/metabolismo
19.
J Biol Chem ; 286(36): 31466-72, 2011 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-21775440

RESUMEN

The integral membrane protein BlaR1 of methicillin-resistant Staphylococcus aureus senses the presence of ß-lactam antibiotics in the milieu and transduces the information to the cytoplasm, where the biochemical events that unleash induction of antibiotic resistance mechanisms take place. We report herein by two-dimensional and three-dimensional NMR experiments of the sensor domain of BlaR1 in solution and by determination of an x-ray structure for the apo protein that Lys-392 of the antibiotic-binding site is posttranslationally modified by N(ζ)-carboxylation. Additional crystallographic and NMR data reveal that on acylation of Ser-389 by antibiotics, Lys-392 experiences N(ζ)-decarboxylation. This unique process, termed the lysine N(ζ)-decarboxylation switch, arrests the sensor domain in the activated ("on") state, necessary for signal transduction and all the subsequent biochemical processes. We present structural information on how this receptor activation process takes place, imparting longevity to the antibiotic-receptor complex that is needed for the induction of the antibiotic-resistant phenotype in methicillin-resistant S. aureus.


Asunto(s)
Proteínas Bacterianas/química , Lisina/metabolismo , Staphylococcus aureus Resistente a Meticilina/química , beta-Lactamas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Descarboxilación , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana , Conformación Proteica
20.
Biochemistry ; 50(13): 2384-6, 2011 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-21341761

RESUMEN

The crystal structure of the first endolytic peptidoglycan lytic transglycosylase MltE from Escherichia coli is reported here. The degradative activity of this enzyme initiates the process of cell wall recycling, which is an integral event in the existence of bacteria. The structure sheds light on how MltE recognizes its substrate, the cell wall peptidoglycan. It also explains the ability of this endolytic enzyme to cleave in the middle of the peptidoglycan chains. Furthermore, the structure reveals how the enzyme is sequestered on the inner leaflet of the outer membrane.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Peptidoglicano Glicosiltransferasa/química , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...